
XpmIR: A Modular Library for Learning to Rank and Neural IR
Experiments

Yuxuan Zong
yuxuan.zong@isir.upmc.fr

Sorbonne Université, CNRS, ISIR, F-75005 Paris, France
Paris, France

Benjamin Piwowarski
benjamin@piwowarski.fr

CNRS, Sorbonne Université, ISIR, F-75005 Paris, France
Paris, France

ABSTRACT

During past years, several frameworks for (Neural) Information
Retrieval have been proposed. However, while they allow repro-
ducing already published results, it is still very hard to re-use some
parts of the learning pipelines, such as for instance the pre-training,
sampling strategy, or a loss in newly developed models. It is also
difficult to use new training techniques with old models, which
makes it more difficult to assess the usefulness of ideas on various
neural IR models. This slows the adoption of new techniques, and
in turn, the development of the IR field. In this paper, we present
XpmIR, a Python library defining a reusable set of experimental
components. The library already contains state-of-the-art models
and indexing techniques and is integrated with the HuggingFace
hub.

CCS CONCEPTS

• Information systems→ Information retrieval; Learning to
rank; • General and reference→ Experimentation.

KEYWORDS

neural information retrieval, learning to rank, experimental frame-
work

ACM Reference Format:

Yuxuan Zong and Benjamin Piwowarski. 2023. XpmIR: A Modular Library
for Learning to Rank and Neural IR Experiments. In Proceedings of the
46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Developing (Neural) Information Retrieval models depends on a
complex pipeline (e.g. pre-processing, pre-training, training, in-
dexation, and evaluation). A series of (Python) libraries have been
proposed to allow easy reproduction of experimental results. While
those libraries are successful when trying to re-run one specific
setting – or variations thereof, as it is possible to reproduce ex-
perimental results and manipulate some experimental parameters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

through a command line interface and/or parameter files, they are
less useful when it comes to new models.

More precisely, modifying the pipeline is not easy since these
projects are not modular enough. We think that this mostly ex-
plains why new models are not developed within those libraries
– thereby preventing the adoption of some components of these
new models into new ones. Designing new models that leverage
recent innovations is time-consuming, and this in turn slows down
research and code sharing.

The aim of the XpmIR library is to propose a framework of re-
usable components that allow designing new experiments for neural
information retrieval (neural IR), as well as reproducing old ones.
XpmIR achieves this goal by: (1) Adopting abstractions to describe
the various data sources through dataset adapters and samplers;
(2) Defining a standardized way to learn, using hooks to modify
the learning behavior; (3) Providing a set of reusable components
(samplers, neural models, text representation, evaluation toolchain);
(4) Providing pre-trained models on HuggingFace.1

The library is open source (GPLv3 licence) and available on
GitHub2. XpmIR is built upon experimaestro and datamaestro [23],
which are generic frameworks (i.e. not specific to IR) that allows to
(1) standardize access to datasets; (2) define modular experimental
components (configuration and tasks); (3) express full experimental
plans with automatic folder tracking (each folder corresponding to
a unique set of experimental settings); (4) monitor the submitted
tasks (through a scheduler).

2 RELATEDWORKS

Firstly, there exist many libraries related to IR or implementing
search indices for standard IR models. Among those, we can cite:

Datasets ir-datasets [15] propose an API to access many IR
datasets and download them (if freely available);

Indexing and retrieval There are many libraries that deal
with indexing. For standard IR models, we can cite Pyserini
[29], PyTerrier [16] and [18], and for dense neural IR mod-
els, FAISS [9].

Evaluation ir-measures [15] is a recent library that provides
direct access to a very diverse set of IR metrics.

When possible XpmIR re-uses existing libraries by providing com-
ponents encapsulating the access to these libraries, so they can be
reused in different experimental pipelines. More precisely, as of
today, XpmIR provides components for ir-datasets, ir-measures, Py-
serini, and FAISS. A helper library has been developed to tackle the

1The current list of pre-trained models is available at https://huggingface.co/models?
library=xpmir
2The documentation can be found at https://experimaestro-ir.readthedocs.io/ and the
source code at https://github.com/bpiwowar/experimaestro-ir

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://huggingface.co/models?library=xpmir
https://huggingface.co/models?library=xpmir
https://experimaestro-ir.readthedocs.io/
https://github.com/bpiwowar/experimaestro-ir

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan. Yuxuan Zong & Benjamin Piwowarski

case of sparse neural IR models that do not rely on term frequency-
based indices. More related to XpmIR, various libraries for neural
IR have been proposed during past years, such as OpenNIR3 [13],
MatchMaker4 [6], Capreolus5 [30] – or more specific code repos-
itories related to one set of models – e.g. for the ColBERT6 [10],
SPLADE models7 [4] and dense models (Tevatron8[5]).

For OpenNIR andMatchMaker, the experiments are all based
on configuration files (or command line parameters) which allow
changing some aspects of the training process but do not allow
combining parts of the pipeline easily.Capreolus, which is themost
related toXpmIR defines a set of components (modules), but relies on
pre-defined tasks (e.g. train and evaluate) that define placeholders
(e.g. which re-ranker to use) which might not fit all the needs. For
instance, generating strong negatives during the learning process
to define new training triplets, as needed in ANCE [28], is not
doable without fully rewriting the learning script in Capreolus,
MatchMaker or OpenNIR.

We argue that these libraries are not modular enough. For in-
stance, what if we want to use a specific MLM pre-training step
such as LexMAE [25] with ColBERT [10]? What if we want to
use one model to generate hard negatives? In these libraries, this
requires coding explicitly all the “glue” between different parts,
but this is time-consuming and error-prone. In comparison, the
XpmIR library has the objective of (i) proposing a set of reusable
components to train and evaluate neural IR models; (ii) allowing
to combine these components and design complex experiments
thanks to experimaestro and datamaestro [23]; (iii) providing a set
of high-level experiment components (e.g. those used in a typi-
cal MS-Marco-based re-ranking task) similar to what is done in
Capreolus; (iv) providing integration with HuggingFace to re-use
pre-trained IR models (as Tevatron).

3 XPMIR

This section describes the various XpmIR library components9
grouped by category:

datasets components provide access to the ir-datasets library
(through lightweight wrappers), as well as other IR-specific
datasets (e.g. triplets to train neural models) and adapters
that can process and transform datasets;

retrievers and scorers components define how to represent
a text, define IR and neural IR models;

learning to rank components allow to build up a training
pipeline

evaluation components allow the evaluation of trained mod-
els.

We illustrate some components by (modified) code excerpts cor-
responding to paper reproductions of two state-of-the-art mod-
els implemented within the library, namely MonoBERT [20] and

3https://github.com/Georgetown-IR-Lab/OpenNIR
4https://github.com/sebastian-hofstaetter/matchmaker
5https://github.com/capreolus-ir/capreolus
6https://github.com/stanford-futuredata/ColBERT
7https://github.com/naver/splade
8https://github.com/texttron/tevatron
9These components either correspond to configurations or tasks in experimaestro:
configurations describe experimental settings, while tasks correspond to executable
code – as for instance, when indexing a collection, learning or evaluating a model

SPLADE [4]. MonoBERT [20] is the well-established cross-encoder
model for the Neural IR that uses a two-stage ranking. SPLADE [4]
is a first-stage ranking model which benefits from a sparse repre-
sentation of documents and queries. Full code can be found in the
documentation10 that illustrate somehow complex experimental
plans composing pre/post-processing steps with learning to rank
components, as well as evaluating the trained model and comparing
it to baselines – illustrating the fact that XpmIR could be used for en-
suring reproducibility of a research paper by providing the full code
of the complete experiments (including baselines and variations).

3.1 Datasets

XpmIR is integrated with the text repository of datamaestro [23]
that provides a standard way to access datasets of different types.
Through datamaestro, XpmIR provides an interface to ir-datasets
[15], allowing it to access easily most IR datasets. XpmIR also pro-
vides access to distillation samples such as those from [8]. Finally,
each data type – documents, topics, assessments, learning triplets,
runs – is associated with a Python interface allowing to access the
data.

XpmIR also provides dataset adapters11 needed to transform a
dataset. For instance, RandomFold can be useful to sample topics
from an Adhoc IR dataset. The following code shows how to sample
500 topics from the MS-Marco development dataset – leaving out
topics in the "small development" dataset commonly used when
reporting results12:

small = prepare_dataset("irds.msmarco-passage.dev.small")
dev = prepare_dataset("irds.msmarco-passage.dev")
ds_val = RandomFold(

dataset=dev, fold=0, sizes=[500], exclude=small.topics
).submit()

Another useful dataset transformation is the creation of a retriever-
based collection composed of all the documents retrieved by a given
retriever – which can be used when computing validation metrics
for first-stage rankers like SPLADE.

3.2 Retrievers and Neural IR models

3.2.1 Text Representation and Neural Models. Many models rely
on some form of text representation. In XpmIR, we distinguish three
types of text representations: (1) a Tokenizer that returns a list
of token IDs; (2) a TokensEncoder that returns one embedding
per token; (3) encoders that encode into a vector either a text (a
TextEncoder, that can be used to transform a document collec-
tion into a FAISS index), pair of texts (DualTextEncoder, e.g. for a
query/document pair), or a triplet (TripletTextEncoder, e.g. for
query/document/document triplet). These encoders are the basis
of dense models, cross-encoders [20], and dual cross-encoders like
duoBERT [21]. This text representation is handled by two concrete
sets of classes, those that correspond to word embeddings like
GloVe [22] or word2vec [19], and can be used to define pre-BERT
models, and those that leverage HuggingFace transformers [27].
10https://experimaestro-ir.readthedocs.io/en/latest/papers/monobert.html for
monoBERT and https://experimaestro-ir.readthedocs.io/en/latest/papers/splade.html
for SPLADE
11https://experimaestro-ir.readthedocs.io/en/latest/data/adapters.html
12the submit sends the task to the experimaestro scheduler

https://github.com/sebastian-hofstaetter/matchmaker
https://experimaestro-ir.readthedocs.io/en/latest/papers/monobert.html
https://experimaestro-ir.readthedocs.io/en/latest/papers/splade.html
https://experimaestro-ir.readthedocs.io/en/latest/data/adapters.html

XpmIR: A Modular Library for Information Retrieval SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.

3.2.2 Retrievers and Scorers. Scorers are responsible for comput-
ing a score for a given query and document – which means that
all neural models are scorers. The neural models are organized
within a hierarchy that allows factorizing as many common prop-
erties as possible. For instance, a DualRepresentationScorer is
a neural model that represents both documents and queries sep-
arately before computing a similarity – dense models are part of
this family, as well as late interaction models. Another example is
a DualVectorScorer that relies on two vectorial representations
(queries and documents), and provide ways to speed up learning
when using batch-wise negatives [24]. In practice, scorers are often
defined as a composition of a scoring function and a text repre-
sentation. For instance, the monoBERT model can be defined as
the composition of a CrossScorer, a classifier of query/document
representations provided by a DualTransformerEncoder, as the
code below13:

monobert = CrossScorer(encoder=DualTransformerEncoder(
model_id="bert-base-uncased", trainable=True))

3.2.3 Retrievers. Retrievers allow searching a document collection
efficiently. The simplest models are standard bag-of-words models,
such as BM25. For such models, a retriever can be created based on
an index. At the moment, a Pyserini [12] adapter is provided, but
others like PyTerrier [16] would be straightforward to implement.
The following code shows how to define a retriever for the BM25
model based on Pyserini [12]:

index = IndexCollection(documents=documents).submit()
retr = AnseriniRetriever(index=index, k=50, model=BM25())

Other types of indices are also supported to allow fast retrieval
with neural models. Dense indices are handled through FAISS in-
tegration [9]. Sparse neural models produce indices with a weight
distribution different from standard IR models [17]; to cope with
those, a helper library has been written in rust14 and allows index-
ing by providing sparse vectors to as document representations.
For retrieval, WAND [1] and MaxScore [26] algorithms are cur-
rently implemented. As an illustration, the code below shows how
to define a retriever for the SPLADE model:

index = SparseRetrieverIndexBuilder(
encoder=DenseDocumentEncoder(scorer=scorer),

documents=documents,↩→

).submit()
retr = SparseRetriever(index=index, topk=100,

encoder=DenseQueryEncoder(scorer=scorer),
)

Finally, for “heavy” neural models that can only be used to re-
rank the results, the TwoStageRetriever class uses a retriever to
select a subset of documents before using a Scorer to rerank them.
The definition of such a retriever is easy:

13This code also shows how components – CrossScorer and
DualTransformerEncoder – can be composed in XpmIR
14https://github.com/experimaestro/experimaestro-ir-rust

retr = TwoStageRetriever(retriever=retriever,

scorer=monobert)↩→

3.3 Learning to Rank

The learning process is handled by different components which are
described below.

Optimization: optimizers and schedulers. The optimization part
defines how to perform a gradient step. It relies on the definition of
a series of optimizers, each responsible for optimizing a part of the
model parameters. The latter can be useful when some parameters
need to be optimized differently, as when fine-tuning transformers
(i.e. normalization layers and biases parameters should not be in-
cluded in the L2 regularization loss). Each optimizer learning rate
can be controlled by a scheduler – which is again commonly used
when fine-tuning transformers [27]. The following code illustrates
how to define the optimizer during the training of MonoBERT,
where the first optimizer uses Adam [11] avoiding L2 regulariza-
tion for biases or normalization layers (parameters whose name
finish by bias or containing LayerNorm), while the second handles
all the other parameters with the AdamW optimizer – this example
illustrates the flexibility of the components exposed by XpmIR:

scheduler = LinearWithWarmup(num_warmup_steps=1024)
optimizers = [

ParameterOptimizer(
scheduler=scheduler, optimizer=Adam(),
filter=RegexParameterFilter(includes=[r"\.bias$",

r"\.LayerNorm\."]),↩→

),
ParameterOptimizer(

scheduler=scheduler,

optimizer=AdamW(weight_decay=1e-2),↩→

),
]

Trainers and samplers. The trainer is responsible for performing
a learning step over the training data. Different trainers exist depend-
ing on the type of samples they can handle (i.e. pointwise, pairwise,
batch-wise). Some trainers are designed to handle distillation, which
is key to obtaining state-of-the-art first-stage rankers [3, 7]. Sam-
plers are in charge of providing data samples whose type depends
on the sampler (e.g. pointwise or pairwise). Finally, hooks can be
used to modify the training process, which might be necessary to
compute regularization losses.

The code below shows how to build a trainer based on knowledge
distillation (used to train SPLADE_DistilMSE [3]), where sampler
is an iterator over tuples composed of a query, two documents, and
their scores computed by monoBERT:

distil_pairwise_trainer = DistillationPairwiseTrainer(
batch_size=64,
sampler=sampler,
lossfn=MSEDifferenceLoss(),
hooks=[FlopsRegularizer()],

)

https://github.com/experimaestro/experimaestro-ir-rust

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan. Yuxuan Zong & Benjamin Piwowarski

Learner. Finally, the Learner is the central class that handles the
overall learning process. It relies on: (i) a neural model to be trained
(the Scorer); (ii) a trainer that specifies how to train the model
(e.g. pointwise, pairwise) and with which data (using samplers);
(iii) an optimizer that specifies how to perform gradient descent;
(iv) one or more listeners that monitor the training process – the
most important is the validation listener allowing keeping the best
checkpoints for a set of validation metrics. Moreover, the learner
can be modified with hooks allowing them to alter some parts of the
learning process. An example of a hook is to distribute the models
on multiple GPUs; another one is to modify the model by “freezing”
some weights. The learner process is divided into epochs – where
each epoch is defined by a number of learning steps (i.e. batches)
performed by the trainer. Note that one epoch does not correspond
to a full pass over the dataset (which is necessary since some collec-
tions might be huge, e.g. if sampling from a retriever). The following
code shows how we define a learner for monoBERT and get the
model that maximizes the RR@10 metric over the validation set:

learner = Learner(
trainer=monobert_trainer, scorer=monobert_scorer,
steps_per_epoch=100, max_epochs=1000,
optimizers=optimizers,
listeners={"best_val": validation},
hooks=[DistributedHook(models=[monobert_scorer])]

)
trained = learner.submit()
best_rr10 = trained["bestval"]["RR@10"]

3.4 Evaluation

The evaluation of the model is the final step of IR experiments. To
ease the evaluation, an EvaluationsCollection class holds the
different datasets and metrics on which evaluation should be per-
formed for each evaluated model. The actual metrics are computed
thanks to ir-measure [14]. The code below shows how to evalu-
ate monoBERT – the retriever_factory defines how to build
a retriever from monoBERT (using the TwoStageRetriever with
best_rr10 as the scorer) depending on the document collection:

measures = [AP, P @ 20, nDCG, nDCG @ 10, nDCG @ 20, RR @ 10]
tests = EvaluationsCollection(

trec2019=Evaluations(
prepare_dataset("irds.msmarco-passage.trec-dl-2019"),

measures
),
msmarco_dev=Evaluations(devsmall, measures),

)
tests.evaluate_retriever(retriever_factory)

4 PAPER REPRODUCTION AND

HUGGINGFACE INTEGRATION

A part of the XpmIR library is dedicated to reproducing (partially)
some IR papers. A command line interface is provided to repro-
duce these papers – automating the upload to HuggingFace Hub,
including monitored training metrics and results on evaluation.15

15An example with monoBERT is available on https://huggingface.co/xpmir/monobert.

Table 1: Reproduction of monoBERT and SPLADE

MS MARCO dev TREC DL 2019
MRR@10 nDCG@10MRR@10 nDCG@10

monoBERT XpmIR 0.364 0.426 0.937 0.705
monoBERT [20] 0.347 - - -

splade-max XpmIR 0.345 0.407 0.973 0.694
splade-max [2] 0.340 - - 0.684

splade-doc XpmIR 0.321 0.404 0.934 0.667
splade-doc [2] 0.322 - - 0.667

splade-DistilMSE XpmIR 0.356 0.421 0.961 0.730
splade-DistilMSE [3] 0.358 - - 0.729

Two (partial) paper reproductions are actually implemented within
the XpmIR library, namely MonoBERT [20] and SPLADE [3]. For
the reproduction of MonoBERT, we use BERT-base as our pre-
trained checkpoint. For SPLADE, we use the DistilBERT-base as
the pre-trained checkpoint. In both cases, we use the MRR@10
and nDCG@10 metrics and evaluate the model on the MS-MARCO
passage retrieval (development set) and TREC-DL-2019. Table 1
shows that the results obtained with XpmIR match those reported
in the papers.

Besides defining components for defining, training, and evalu-
ating neural IR models, XpmIR provides an integration with the
HuggingFace Hub. This allows to upload and download pre-trained
models.16 These models can be used in other experiments and/or
finetuned on specific datasets by leveraging XpmIR. The code below
shows how to create a Scorer from the pre-trained tas-balanced
dense model [8]:

tasb = AutoModel.load_from_hf_hub("xpmir/tas-balanced")

This scorer can then be re-used in another training or evaluation
pipeline.

5 CONCLUSION

In this paper, we presented the XpmIR framework for neural IR
training and evaluation. XpmIR is based on the idea to decompose
dataset pre-processing, neural IR models, learning to rank, and eval-
uation into a set of re-usable components – which leverage existing
IR libraries when possible. These components can be composed
through the experimaestro library [23] to define complex neural
IR experimental plans. XpmIR also provide high level components
that ease the description of standard experiments (e.g. training a
re-ranker on MS Marco). The interest of using such components
is that it is much easier to re-use some of them for new models
and to design experimental plans comparing various models. With
our current code structure and the different components already
presented, many other papers could be easily implemented. We
are for example currently working on reproducing duoBERT [21]
and ColBERT [10], and plan to include modern training procedures
relying on IR-specific masked-LM pre-training (e.g. [25]) and self-
distillation (e.g. used in [3]).
16At the time of writing, monoBERT [20], TAS-Balanced [8], as well as various versions
of SPLADE [2] are available. The actual list of pre-trained models can be found on the
HuggingFace Hub: https://huggingface.co/models?library=xpmir

https://huggingface.co/xpmir/monobert
https://huggingface.co/models?library=xpmir

XpmIR: A Modular Library for Information Retrieval SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.

REFERENCES

[1] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
2003. Efficient query evaluation using a two-level retrieval process. In Proceedings
of the twelfth international conference on Information and knowledge management
(CIKM ’03). Association for Computing Machinery, New York, NY, USA, 426–434.
https://doi.org/10.1145/956863.956944

[2] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval.
arXiv:2109.10086 (Sep 2021). http://arxiv.org/abs/2109.10086 arXiv:2109.10086
[cs].

[3] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. FromDistillation to Hard Negative Sampling: Making Sparse Neural IRMod-
els More Effective. arXiv:2205.04733 (May 2022). http://arxiv.org/abs/2205.04733
arXiv:2205.04733 [cs].

[4] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. Technical Report.
http://arxiv.org/abs/2107.05720 arXiv: 2107.05720.

[5] Luyu Gao, Xueguang Ma, Jimmy J. Lin, and Jamie Callan. 2022. Tevatron: An
Efficient and Flexible Toolkit for Dense Retrieval. ArXiv abs/2203.05765 (2022).

[6] Sebastian Hofstätter. 2019. Matchmaker. https://github.com/sebastian-
hofstaetter/matchmaker

[7] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2021. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. arXiv:2010.02666 (Jan 2021). http://arxiv.
org/abs/2010.02666 arXiv:2010.02666 [cs].

[8] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling. arXiv:2104.06967 (May 2021). http://arxiv.org/abs/2104.
06967 arXiv:2104.06967 [cs].

[9] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[10] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. arXiv:2004.12832 [cs]
(April 2020). http://arxiv.org/abs/2004.12832 arXiv: 2004.12832.

[11] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[12] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible In-
formation Retrieval Research with Sparse and Dense Representations. In Pro-
ceedings of the 44th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (Virtual Event, Canada) (SIGIR ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 2356–2362. https:
//doi.org/10.1145/3404835.3463238

[13] Sean MacAvaney. 2020. OpenNIR: A Complete Neural Ad-Hoc Ranking Pipeline.
In WSDM 2020.

[14] SeanMacAvaney, CraigMacdonald, and Iadh Ounis. 2022. Streamlining evaluation
with ir-measures. Lecture Notes in Computer Science, Vol. 13186. Springer Interna-
tional Publishing, Cham, 305–310. https://doi.org/10.1007/978-3-030-99739-7_38

[15] Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan,
and Nazli Goharian. 2021. Simplified DataWrangling with ir_datasets. In Proceed-
ings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval. Association for Computing Machinery, New York, NY,
USA, 2429–2436. https://doi.org/10.1145/3404835.3463254

[16] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation
inInformation Retrieval using PyTerrier. In Proceedings of ICTIR 2020.

[17] Joel Mackenzie, Antonio Mallia, and Alistair Moffat. 2022. Accelerating Learned
Sparse Indexes Via Term Impact Decomposition. In Findings of the Association
for Computational Linguistics: EMNLP 2022.

[18] Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant Indexes and Search for Academia. In Proceedings of the Open-Source IR
Replicability Challenge co-located with 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, OSIRRC@SIGIR 2019, Paris,
France, July 25, 2019. 50–56. http://ceur-ws.org/Vol-2409/docker08.pdf

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality..
In NIPS’14, Vol. cs.CL. 3111–3119. http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdfhttp:
//papers.nips.cc/paper/5021-distributed-representations-of-words-and-
phrases-and-their-compositionality

[20] Rodrigo Nogueira and Kyunghyun Cho. 2020. Passage Re-ranking with BERT.
https://doi.org/10.48550/arXiv.1901.04085 arXiv:1901.04085 [cs].

[21] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-
Stage Document Ranking with BERT. arXiv:1910.14424 [cs] (Oct. 2019). http:
//arxiv.org/abs/1910.14424 ZSCC: 0000001 arXiv: 1910.14424.

[22] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation.

[23] Benjamin Piwowarski. 2020. Experimaestro and Datamaestro: Experiment and
Dataset Managers (for IR). In ACM SIGIR 2020. Xian, China. https://doi.org/10.
1145/3397271.3401410 ZSCC: NoCitationData[s0].

[24] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training
Approach to Dense Passage Retrieval for Open-Domain Question Answering. In
In Proceedings of NAACL.

[25] Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Xiaolong Huang, Binxing Jiao,
Linjun Yang, and Daxin Jiang. 2022. LexMAE: Lexicon-Bottlenecked Pretraining
for Large-Scale Retrieval. In ICLR. arXiv. https://doi.org/10.48550/arXiv.2208.
14754 arXiv:2208.14754 [cs].

[26] Howard Turtle and James Flood. 1995. Query evaluation: Strategies and opti-
mizations. Information Processing & Management 31, 6 (Nov. 1995), 831–850.
https://doi.org/10.1016/0306-4573(95)00020-H

[27] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. HuggingFace’s Transformers: State-of-
the-art Natural Language Processing. https://doi.org/10.48550/arXiv.1910.03771
arXiv:1910.03771 [cs].

[28] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. arXiv:2007.00808 (Oct
2020). http://arxiv.org/abs/2007.00808 arXiv:2007.00808 [cs].

[29] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible Ranking
Baselines Using Lucene. 10, 4 (2018). https://doi.org/10/ggmdws

[30] Andrew Yates, Siddhant Arora, Xinyu Zhang, Wei Yang, Kevin Martin Jose, and
Jimmy Lin. [n. d.]. Capreolus: A Toolkit for End-to-End Neural Ad Hoc Retrieval
(WSDM ’20). 861–864. https://doi.org/10/ggjnkm

https://doi.org/10.1145/956863.956944
http://arxiv.org/abs/2109.10086
http://arxiv.org/abs/2205.04733
http://arxiv.org/abs/2107.05720
https://github.com/sebastian-hofstaetter/matchmaker
https://github.com/sebastian-hofstaetter/matchmaker
http://arxiv.org/abs/2010.02666
http://arxiv.org/abs/2010.02666
http://arxiv.org/abs/2104.06967
http://arxiv.org/abs/2104.06967
http://arxiv.org/abs/2004.12832
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1007/978-3-030-99739-7_38
https://doi.org/10.1145/3404835.3463254
http://ceur-ws.org/Vol-2409/docker08.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://doi.org/10.48550/arXiv.1901.04085
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424
https://doi.org/10.1145/3397271.3401410
https://doi.org/10.1145/3397271.3401410
https://doi.org/10.48550/arXiv.2208.14754
https://doi.org/10.48550/arXiv.2208.14754
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.48550/arXiv.1910.03771
http://arxiv.org/abs/2007.00808
https://doi.org/10/ggmdws
https://doi.org/10/ggjnkm

	Abstract
	1 Introduction
	2 Related Works
	3 XpmIR
	3.1 Datasets
	3.2 Retrievers and Neural IR models
	3.3 Learning to Rank
	3.4 Evaluation

	4 Paper reproduction and HuggingFace integration
	5 Conclusion
	References

